Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1592437.v1

ABSTRACT

Background: The emergence of the SARS-CoV-2 Omicron variant has been triggering the new wave of COVID-19 globally. However, the risk factors and outcomes for radiological abnormalities in the early convalescent stage (1 month after onset) of Omicron infected patients are still unknown.Methods: Patients were retrospectively enrolled if they were admitted to the hospital due to COVID-19 and underwent chest CT scans during hospitalization between 8 January and 24 February 2022. The chest CTs and clinical data obtained at admission and 1 month after onset were longitudinally analyzed. Spearman rank correlation analysis was used to investigate the correlation between laboratory markers and CT scores. Uni-/multi-variable logistic regression tests were performed to explore independent risk factors for radiological abnormalities at admission and residual pulmonary abnormalities after 1 month. Results: We assessed 316 COVID-19 patients, including 47% with radiological abnormalities at admission and 23% with residual pulmonary abnormalities at 1-month follow-up. In a multivariate regression analysis, age ≥ 50 years, body mass index ≥ 23.87, days after vaccination ≥ 81 days, lymphocyte count ≤ 1.21×10-9/L, Interleukin-6 ≥ 10.05 pg/mL and IgG ≤ 14.140 S/CO were independent risk factors for CT abnormalities at admission (odds ratio = 2.870, 4.171, 2.360, 2.826, 3.886 and 2.828, respectively; P < 0.05 for each comparison). The presence of interlobular septal thickening and IL-6 ≥ 5.85 pg/mL were the independent risk factors for residual pulmonary abnormalities at 1-month follow-up (odds ratio = 3.619 and 3.197, respectively; P < 0.05 for each comparison). There were no significant changes in the number of involved lung lobes (P = 0.308) and total CT score (P = 0.068) during the early convalescent stage. And the level of IL-6 showed positive correlation with CT score at admission (spearman r = 0.202, P = 0.030).Conclusions: The higher IL-6 level was a common independent risk factor for CT abnormalities at admission and residual pulmonary abnormalities at 1-month follow-up. And there were no obvious radiographic changes during the early convalescent stage in patients with residual pulmonary abnormalities. 


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339952

ABSTRACT

Normal tissue physiology and repair depends on communication with the immune system. Understanding this communication at the molecular level in intact tissue requires new methods. The consequences of SARS-CoV-2 infection, which can result in acute respiratory distress, thrombosis and death, has been studied primarily in accessible liquid specimens such as blood, sputum and bronchoalveolar lavage, all of which are peripheral to the primary site of infection in the lung. Here, we describe the combined use of multiplexed deep proteomics with multiplexed imaging to profile infection and its sequelae directly in fixed lung tissue specimens obtained from necropsy of infected animals and autopsy of human decedents. We characterize multiple steps in disease response from cytokine accumulation and protein phosphorylation to activation of receptors, changes in signaling pathways, and crosslinking of fibrin to form clots. Our data reveal significant differences between naturally resolving SARS-CoV-2 infection in rhesus macaques and lethal COVID-19 in humans. The approach we describe is broadly applicable to other tissues and diseases.


Subject(s)
COVID-19 , Thrombosis , Death , Infections
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.339465

ABSTRACT

Antigenic imprinting, which describes the bias of antibody response due to previous immune history, can influence vaccine effectiveness and has been reported in different viruses. Give that COVID-19 vaccine development is currently a major focus of the world, there is a lack of understanding of how background immunity influence antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting in Sarbecovirus, which is the subgenus that SARS-CoV-2 belongs to. Specifically, we sequentially immunized mice with two antigenically distinct Sarbecovirus strains, namely SARS-CoV and SARS-CoV-2. We found that the neutralizing antibodies triggered by the sequentially immunization are dominantly against the one that is used for priming. Given that the impact of the background immunity on COVID-19 is still unclear, our results will provide important insights into the pathogenesis of this disease as well as COVID-19 vaccination strategy.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211664

ABSTRACT

SARS-CoV-2 infection induces severe disease in a subpopulation of patients, but the underlying mechanisms remain unclear. We demonstrate robust IgM autoantibodies that recognize angiotensin converting enzyme-2 (ACE2) in 18/66 (27%) patients with severe COVID-19, which are rare (2/52; 3.8%) in hospitalized patients who are not ventilated. The antibodies do not undergo class-switching to IgG, suggesting a T-independent antibody response. Purified IgM from anti-ACE2 patients activates complement. Pathological analysis of lung obtained at autopsy shows endothelial cell staining for IgM in blood vessels in some patients. We propose that vascular endothelial ACE2 expression focuses the pathogenic effects of these autoantibodies on blood vessels, and contributes to the angiocentric pathology observed in some severe COVID-19 patients. These findings may have predictive and therapeutic implications.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.325050

ABSTRACT

SARS-CoV-2, a positive single-stranded RNA virus, caused the COVID-19 pandemic. Although its sense-mRNA architecture was reported, its anti-sense strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand. During negative strand synthesis, apart from canonical sub-genomic ORFs, numerous non-canonical fusion transcripts are formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor Remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the anti-viral drug design.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.15.339838

ABSTRACT

The Spike protein of SARS-CoV-2, its receptor binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL